enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Main diagonal - Wikipedia

    en.wikipedia.org/wiki/Main_diagonal

    The trace of a matrix is the sum of the diagonal elements. The top-right to bottom-left diagonal is sometimes described as the minor diagonal or antidiagonal. The off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero. [4] [5]

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal. Hollow matrix: A square matrix whose main diagonal comprises only zero elements. Integer matrix: A matrix whose entries are all integers. Logical matrix: A matrix with all entries either 0 or 1.

  4. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero.

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    A can therefore be decomposed into a matrix composed of its eigenvectors, a diagonal matrix with its eigenvalues along the diagonal, and the inverse of the matrix of eigenvectors. This is called the eigendecomposition and it is a similarity transformation. Such a matrix A is said to be similar to the diagonal matrix Λ or diagonalizable.

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  8. Bidiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Bidiagonal_matrix

    In mathematics, a bidiagonal matrix is a banded matrix with non-zero entries along the main diagonal and either the diagonal above or the diagonal below. This means there are exactly two non-zero diagonals in the matrix. When the diagonal above the main diagonal has the non-zero entries the matrix is upper bidiagonal.

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.