Search results
Results from the WOW.Com Content Network
In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .
The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:
Real gases are non-ideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law.To understand the behaviour of real gases, the following must be taken into account:
Table data obtained from CRC Handbook of Chemistry and Physics 44th ed. Annotation "(s)" indicates equilibrium temperature of vapor over solid. Otherwise temperature is equilibrium of vapor over liquid.
The compressibility factor is a dimensionless quantity which is equal to 1 for ideal gases and deviates from unity for increasing levels of non-ideality. [ 9 ] Several non-ideal models exist, from the simplest cubic equations of state (such as the Van der Waals [ 4 ] [ 10 ] and the Peng-Robinson [ 11 ] models) up to complex multi-parameter ones ...
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. [1] The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics.
These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states. [1] Reduced properties are also used to define the Peng–Robinson equation of state, a model designed to provide reasonable accuracy near the critical point. [2]
Consider the first triangular diagram below, which shows all possible mixtures of methane, oxygen and nitrogen. Air is a mixture of about 21 volume percent oxygen, and 79 volume percent inerts (nitrogen). Any mixture of methane and air will therefore lie on the straight line between pure methane and pure air – this is shown as the blue air-line.