Search results
Results from the WOW.Com Content Network
This can be taken as a significant (and purely mathematical) justification of the use of the Laplacian and of the heat equation in modeling any physical phenomena which are homogeneous and isotropic, of which heat diffusion is a principal example. The diffusivity constant, α, is often not present in mathematical studies of the heat equation ...
If the temperature of the environment is known beforehand, then a thermistor may be used to measure the value of the dissipation constant. For example, the thermistor may be used as a flow-rate sensor, since the dissipation constant increases with the rate of flow of a fluid past the thermistor.
The fluctuation–dissipation theorem says that when there is a process that dissipates energy, turning it into heat (e.g., friction), there is a reverse process related to thermal fluctuations. This is best understood by considering some examples: Drag and Brownian motion
Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of ...
For a similar process at constant temperature and volume, the change in Helmholtz free energy must be negative, <. Thus, a negative value of the change in free energy (G or A) is a necessary condition for a process to be spontaneous. This is the most useful form of the second law of thermodynamics in chemistry, where free-energy changes can be ...
The constant of proportionality is the heat transfer coefficient. [7] The law applies when the coefficient is independent, or relatively independent, of the temperature difference between object and environment. In classical natural convective heat transfer, the heat transfer coefficient is dependent on the temperature.
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).