Search results
Results from the WOW.Com Content Network
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes .
In this example, a self-adjoint morphism is a symmetric relation. The category Cob of cobordisms is a dagger compact category , in particular it possesses a dagger structure. The category Hilb of Hilbert spaces also possesses a dagger structure: Given a bounded linear map f : A → B {\displaystyle f:A\rightarrow B} , the map f † : B → A ...
As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR. Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic.
It is frequently the case that antiautomorphisms are involutions, i.e. the square of the antiautomorphism is the identity map; these are also called involutive antiautomorphism s. For example, in any group the map that sends x to its inverse x −1 is an involutive antiautomorphism.
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group:
Negation As Failure (NAF, for short) is a non-monotonic inference rule in logic programming, used to derive (i.e. that is assumed not to hold) from failure to derive . Note that n o t p {\displaystyle \mathrm {not} ~p} can be different from the statement ¬ p {\displaystyle \neg p} of the logical negation of p {\displaystyle p} , depending on ...
A special case of another class of elementary matrix, that which represents multiplication of a row or column by −1, is also involutory; it is in fact a trivial example of a signature matrix, all of which are involutory. Some simple examples of involutory matrices are shown below.