enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 43 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The set {3,19} generates the group, which means that every element of (/) is of the form 3 a × 19 b (where a is 0, 1, 2, or 3, because the element 3 has order 4, and similarly b is 0 or 1, because the element 19 has order 2).

  5. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    [3] [4] Quaternions are ... multiplication, and multiplicative inverse are ... The fourth power of the norm of a quaternion is the determinant of the corresponding ...

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The multiplicative inverse of a non-zero element may be computed with the extended Euclidean algorithm; see Extended Euclidean algorithm § Simple algebraic field extensions. However, with this representation, elements of G F ( q ) {\displaystyle \mathrm {GF} (q)} may be difficult to distinguish from the corresponding polynomials.

  7. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    Once we have defined multiplication for formal power series, we can define multiplicative inverses as follows. The multiplicative inverse of a formal power series A is a formal power series C such that AC = 1, provided that such a formal power series exists. It turns out that if A has a multiplicative inverse, it is unique, and we denote it by ...

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A −1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or ...

  9. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠ .