Search results
Results from the WOW.Com Content Network
For a complete list of integral functions, please see the list of integrals. Indefinite integral. Indefinite integrals are antiderivative functions. ... (x,y) is the ...
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics, the exponential integral Ei is a special function on the complex plane .
Nonelementary antiderivatives can often be evaluated using Taylor series. Even if a function has no elementary antiderivative, its Taylor series can always be integrated term-by-term like a polynomial, giving the antiderivative function as a Taylor series with the same radius of convergence. However, even if the integrand has a convergent ...
Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo . As for definition (5), the additive property together with the complex derivative f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} are sufficient to guarantee f ( x ) = e x ...
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
For example, from the differential equation definition, e x e −x = 1 when x = 0 and its derivative using the product rule is e x e −x − e x e −x = 0 for all x, so e x e −x = 1 for all x. From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity.