enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  3. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.).

  4. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states) according to some heuristic. But in beam search, only a predetermined number of best partial solutions are kept as candidates. [1] It is thus a greedy algorithm.

  5. Category:Greedy algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Greedy_algorithms

    Best-first search; G. Greedoid; Greedy algorithm; Greedy algorithm for Egyptian fractions; Greedy number partitioning; Greedy randomized adaptive search procedure; K.

  6. Talk:Best-first search - Wikipedia

    en.wikipedia.org/wiki/Talk:Best-first_search

    Greedy Best First Search is a Best First Search where the node evaluation function f(n) is defined as f(n) = h(n). It is also known as "Pure Heuristic Search", since the evaluation function disregards how hard is to get to the node (I need to look for a proper reference, but I think it is Richard Korf the one that introduced the term.

  7. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    Despite this, for many simple problems, the best-suited algorithms are greedy. It is important, however, to note that the greedy algorithm can be used as a selection algorithm to prioritize options within a search, or branch-and-bound algorithm. There are a few variations to the greedy algorithm: [5] Pure greedy algorithms; Orthogonal greedy ...

  8. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  9. Greedy randomized adaptive search procedure - Wikipedia

    en.wikipedia.org/wiki/Greedy_randomized_adaptive...

    The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search . [ 1 ]