enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The mathematical by-product of this calculation is the massenergy equivalence formula, that mass and energy are essentially the same thing: [14]: 51 [15]: 121 = = At a low speed (v ≪ c), the relativistic kinetic energy is approximated well by the classical kinetic energy.

  3. Specific kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Specific_kinetic_energy

    In physics, particularly in mechanics, specific kinetic energy is a fundamental concept that refers to the kinetic energy per unit mass of a body or system of bodies in motion. The specific kinetic energy of a system is a crucial parameter in understanding its dynamic behavior and plays a key role in various scientific and engineering applications.

  4. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    The kinetic and potential energies still change as the system evolves, but the motion of the system will be such that their sum, the total energy, is constant. This is a valuable simplification, since the energy E is a constant of integration that counts as an arbitrary constant for the problem, and it may be possible to integrate the ...

  6. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    A spherical pendulum consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity. Spherical coordinates are used to describe the position of the mass in terms of (r, θ, φ), where r is fixed, r = ℓ. Spherical pendulum: angles and velocities.

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  9. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    The second part expresses the kinetic energy of a system of particles in terms of the velocities of the individual particles and the centre of mass.. Specifically, it states that the kinetic energy of a system of particles is the sum of the kinetic energy associated to the movement of the center of mass and the kinetic energy associated to the movement of the particles relative to the center ...