Search results
Results from the WOW.Com Content Network
Neural adaptation or sensory adaptation is a gradual decrease over time in the responsiveness of the sensory system to a constant stimulus. It is usually experienced as a change in the stimulus. For example, if a hand is rested on a table, the table's surface is immediately felt against the skin.
Animal ability to process and respond to stimuli is correlated with brain size. Small-brain animals tend to show simple behaviors that are less dependent on learning than those of large-brained animals. Vertebrates, particularly mammals, have larger brains and complex behavior that changes with experience.
The book, Neural Darwinism – The Theory of Neuronal Group Selection (1987), is the first in a trilogy of books that Edelman wrote to delineate the scope and breadth of his ideas on how a biological theory of consciousness and animal body plan evolution could be developed in a bottom-up fashion.
Darwin's theory of evolution by natural selection is the only scientific explanation for why an animal's behaviour is usually well adapted for survival and reproduction in its environment. However, claiming that a particular mechanism is well suited to the present environment is different from claiming that this mechanism was selected for in ...
Ctenophores are one of, if not the, oldest animals on Earth — quite possibly a sister to all other animals in the tree of life, so “they provide a really unique opportunity to study ...
Multimodal perception is how animals form coherent, valid, and robust perception by processing sensory stimuli from various modalities. Surrounded by multiple objects and receiving multiple sensory stimulations, the brain is faced with the decision of how to categorize the stimuli resulting from different objects or events in the physical world.
Evolution of the brain from ape to man. The evolution of the brain refers to the progressive development and complexity of neural structures over millions of years, resulting in the diverse range of brain sizes and functions observed across different species today, particularly in vertebrates.
These use calcium rather than sodium action potentials, but the mechanism was probably adapted into neural electrical signaling in multicellular animals. In some colonial eukaryotes, such as Obelia, electrical signals propagate not only through neural nets, but also through epithelial cells in the shared digestive system of the colony. [8]