Search results
Results from the WOW.Com Content Network
Thus, an accelerating universe took a longer time to expand from 2/3 to 1 times its present size, compared to a non-accelerating universe with constant ˙ and the same present-day value of the Hubble constant. This results in a larger light-travel time, larger distance and fainter supernovae, which corresponds to the actual observations.
Two years of data from NASA's James Webb Space Telescope have now validated the Hubble Space Telescope's earlier finding that the rate of the universe's expansion is faster - by about 8% - than ...
The "acceleration" curve shows the trajectory of the scale factor for a universe with dark energy. The expansion of the universe can be understood as a consequence of an initial impulse (possibly due to inflation), which sent the contents of the universe flying apart. The mutual gravitational attraction of the matter and radiation within the ...
Timeline of the expansion of the universe, where space, including hypothetical non-observable portions of the universe, is represented at each time by the circular sections. On the left, the dramatic expansion occurs in the inflationary epoch; and at the center, the expansion accelerates (artist's concept; neither time nor size are to scale).
The final component is dark energy: it is an intrinsic property of space and has a constant energy density, regardless of the dimensions of the volume under consideration (ρ ∝ a 0). Thus, unlike ordinary matter, it is not diluted by the expansion of space.
Euclid is a wide-angle space telescope with a 600-megapixel camera to record visible light, a near-infrared spectrometer, and photometer, to determine the redshift of detected galaxies. It was developed by the European Space Agency (ESA) and the Euclid Consortium and was launched on 1 July 2023 from Cape Canaveral in Florida. [10] [11]
The expansion of space summarized by the Big Bang interpretation of Hubble's law is relevant to the old conundrum known as Olbers' paradox: If the universe were infinite in size, static, and filled with a uniform distribution of stars, then every line of sight in the sky would end on a star, and the sky would be as bright as the surface of a ...
The "Big Bang" scenario, with cosmic inflation and standard particle physics, is the only cosmological model consistent with the observed continuing expansion of space, the observed distribution of lighter elements in the universe (hydrogen, helium, and lithium), and the spatial texture of minute irregularities (anisotropies) in the CMB radiation.