Search results
Results from the WOW.Com Content Network
For example, if the generating set has elements then each vertex of the Cayley graph has incoming and outgoing directed edges. In the case of a symmetric generating set S {\displaystyle S} with r {\displaystyle r} elements, the Cayley graph is a regular directed graph of degree r . {\displaystyle r.}
Visualization comparing the sheet and the binary tree Cayley graph of (,). Red and blue edges correspond to a {\displaystyle a} and b {\displaystyle b} , respectively. In the mathematical field of group theory , the Baumslag–Solitar groups are examples of two-generator one-relator groups that play an important role in combinatorial group ...
Cayley, in his original 1854 paper, [10] showed that the correspondence in the theorem is one-to-one, but he failed to explicitly show it was a homomorphism (and thus an embedding). However, Nummela notes that Cayley made this result known to the mathematical community at the time, thus predating Jordan by 16 years or so.
More generally, the Švarc–Milnor lemma states that if a group G acts properly discontinuously with compact quotient on a proper geodesic space X then G is quasi-isometric to X (meaning that any Cayley graph for G is). This gives new examples of groups quasi-isometric to each other: If G' is a subgroup of finite index in G then G' is quasi ...
Hence, the fundamental group of the Cayley graph Γ(G) is isomorphic to the kernel of φ, the normal subgroup of relations among the generators of G. The extreme case is when G = {e}, the trivial group, considered with as many generators as F, all of them trivial; the Cayley graph Γ(G) is a bouquet of circles, and its fundamental group is F ...
Cayley table as general (and special) linear group GL(2, 2) In mathematics, D 3 (sometimes alternatively denoted by D 6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S 3. It is also the smallest non-abelian group. [1] This page illustrates many group concepts using this group as example.
This is usually done by studying the Cayley graphs of groups, which, in addition to the graph structure, are endowed with the structure of a metric space, given by the so-called word metric. Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s.
In mathematics, an automatic group is a finitely generated group equipped with several finite-state automata.These automata represent the Cayley graph of the group. That is, they can tell whether a given word representation of a group element is in a "canonical form" and can tell whether two elements given in canonical words differ by a generator.