Ads
related to: dynamic viscosity versus kinematic heat flow
Search results
Results from the WOW.Com Content Network
Viscosity in gases arises from molecules traversing layers of flow and transferring momentum between layers. This transfer of momentum can be thought of as a frictional force between layers of flow. Since the momentum transfer is caused by free motion of gas molecules between collisions, increasing thermal agitation of the molecules results in ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
μ is the dynamic viscosity of the fluid (Pa·s or N·s/m 2 or kg/(m·s)) ν is the kinematic viscosity of the fluid (m 2 /s). The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface.
ν is the kinematic viscosity. The L and D subscripts indicate the length scale basis for the Grashof number. The transition to turbulent flow occurs in the range 10 8 < Gr L < 10 9 for natural convection from vertical flat plates.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
Also, Awad and Lage: [5] obtained a modified form of the Bejan number, originally proposed by Bhattacharjee and Grosshandler for momentum processes, by replacing the dynamic viscosity appearing in the original proposition with the equivalent product of the fluid density and the momentum diffusivity of the fluid. This modified form is not only ...
Ads
related to: dynamic viscosity versus kinematic heat flow