enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  3. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...

  4. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Fourier series are an important tool in real analysis. Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials). The study of Fourier series typically occurs and is handled within the branch mathematics ...

  5. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.

  6. Fourier - Wikipedia

    en.wikipedia.org/wiki/Fourier

    Fourier transform, the type of linear canonical transform that is the generalization of the Fourier series; Fourier operator, the kernel of the Fredholm integral of the first kind that defines the continuous Fourier transform; Fourier inversion theorem, any one of several theorems by which Fourier inversion recovers a function from its Fourier ...

  7. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  8. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    By applying Euler's formula (= ⁡ + ⁡), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...

  9. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.