Search results
Results from the WOW.Com Content Network
In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors.It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity.
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
It remains an open question as to whether there exists a more powerful definition of 'well-defined' that is able to capture both computable and 'non-computable' statements. [a] [33] All statements characterised in modern programming languages are well-defined, including C++, Python, and Java. [32]
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...
definition: is defined as metalanguage:= means "from now on, is defined to be another name for ." This is a statement in the metalanguage, not the object language. The notation may occasionally be seen in physics, meaning the same as :=.