enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    The proof is the same as for complex-valued series: use the completeness to derive the Cauchy criterion for convergence—a series is convergent if and only if its tails can be made arbitrarily small in norm—and apply the triangle inequality. In particular, for series with values in any Banach space, absolute convergence implies convergence ...

  3. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of ⁡ (see Fresnel integral).

  4. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series =. List of tests

  6. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound for a series or for the absolute values of its terms is an effective way to prove convergence or absolute convergence of a series. [48] [49] [47] [50]

  7. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    A series is unconditionally convergent if any rearrangement creates a series with the same convergence as the original series. Absolutely convergent series are unconditionally convergent . But the Riemann series theorem states that conditionally convergent series can be rearranged to create arbitrary convergence. [ 4 ]

  8. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    In the two-sided case, it is sometimes called the strip of absolute convergence. The Laplace transform is analytic in the region of absolute convergence. Similarly, the set of values for which F(s) converges (conditionally or absolutely) is known as the region of conditional convergence, or simply the region of convergence (ROC).

  9. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet, and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862. [1]