enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  3. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.

  4. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    One may also use Newton's method to solve systems of k equations, which amounts to finding the (simultaneous) zeroes of k continuously differentiable functions :. This is equivalent to finding the zeroes of a single vector-valued function F : R k → R k . {\displaystyle F:\mathbb {R} ^{k}\to \mathbb {R} ^{k}.}

  6. Wolfram Language - Wikipedia

    en.wikipedia.org/wiki/Wolfram_Language

    The Wolfram Language was part of the initial version of Mathematica in 1988. [11] Symbolic aspects of the engine make it a computer algebra system. The language can perform integration, differentiation, matrix manipulations, and solve differential equations using a set of rules.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    A flag can be passed to use the lower triangular factor instead. In R, the chol function gives the Cholesky decomposition. In Julia, the cholesky function from the LinearAlgebra standard library gives the Cholesky decomposition. In Mathematica, the function "CholeskyDecomposition" can be applied to a matrix.

  8. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  9. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...