Search results
Results from the WOW.Com Content Network
The multiple subset sum problem is an optimization problem in computer science and operations research.It is a generalization of the subset sum problem.The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets.
Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time (/). To do that, the algorithm passes through the first array in decreasing order (starting at the largest element) and the second array in increasing order (starting at the smallest element).
Several additional heuristics can be used to improve the runtime: [2] In a node in which the current sum-difference is at least the sum of all remaining numbers, the remaining numbers can just be put in the smallest-sum subset. If we reach a leaf in which the sum-difference is 0 or 1, then the algorithm can terminate since this is the optimum.
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2. Although the partition problem is NP-complete, there is a ...
The two subsets should contain floor(n/2) and ceiling(n/2) items. It is a variant of the partition problem. It is NP-hard to decide whether there exists a partition in which the sums in the two subsets are equal; see [4] problem [SP12]. There are many algorithms that aim to find a balanced partition in which the sum is as nearly-equal as possible.
[2] Minimize the largest sum. This objective is equivalent to one objective for Identical-machines scheduling. There are k identical processors, and each number in S represents the time required to complete a single-processor job. The goal is to partition the jobs among the processors such that the makespan (the finish time of the last job) is ...
The 4-partition problem is a variant in which S contains n = 4 m integers, the sum of all integers is , and the goal is to partition it into m quadruplets, all with a sum of T. It can be assumed that each integer is strictly between T /5 and T /3.
2 + 1 + 1 1 + 1 + 1 + 1. The only partition of zero is the empty sum, having no parts. The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1. An individual summand in a partition is called a part.