enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color charge - Wikipedia

    en.wikipedia.org/wiki/Color_charge

    Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.

  3. Quantum chromodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_chromodynamics

    The three kinds of charge in QCD (as opposed to one in quantum electrodynamics or QED) are usually referred to as "color charge" by loose analogy to the three kinds of color (red, green and blue) perceived by humans. Other than this nomenclature, the quantum parameter "color" is completely unrelated to the everyday, familiar phenomenon of color.

  4. Strong interaction - Wikipedia

    en.wikipedia.org/wiki/Strong_interaction

    The theory of quantum chromodynamics explains that quarks carry what is called a color charge, although it has no relation to visible color. [6] Quarks with unlike color charge attract one another as a result of the strong interaction, and the particle that mediates this was called the gluon .

  5. Color confinement - Wikipedia

    en.wikipedia.org/wiki/Color_confinement

    In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions below the Hagedorn temperature of approximately 2 tera kelvin (corresponding to energies of ...

  6. Gluon - Wikipedia

    en.wikipedia.org/wiki/Gluon

    Gluons carry the color charge of the strong interaction, thereby participating in the strong interaction as well as mediating it. Because gluons carry the color charge, QCD is more difficult to analyze compared to quantum electrodynamics (QED) where the photon carries no electric charge.

  7. Quark - Wikipedia

    en.wikipedia.org/wiki/Quark

    According to quantum chromodynamics (QCD), quarks possess a property called color charge. There are three types of color charge, arbitrarily labeled blue, green, and red. [nb 6] Each of them is complemented by an anticolor – antiblue, antigreen, and antired. Every quark carries a color, while every antiquark carries an anticolor. [76]

  8. Gluon field - Wikipedia

    en.wikipedia.org/wiki/Gluon_field

    Each is a scalar field, for some component of spacetime and gluon color charge. The Gell-Mann matrices λ a are eight 3 × 3 matrices which form matrix representations of the SU (3) group . They are also generators of the SU(3) group, in the context of quantum mechanics and field theory; a generator can be viewed as an operator corresponding to ...

  9. Charge (physics) - Wikipedia

    en.wikipedia.org/wiki/Charge_(physics)

    In physics, a charge is any of many different quantities, such as the electric charge in electromagnetism or the color charge in quantum chromodynamics. Charges correspond to the time-invariant generators of a symmetry group , and specifically, to the generators that commute with the Hamiltonian .