Search results
Results from the WOW.Com Content Network
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
The tree with the minimal weighted path length is, by definition, statically optimal. But weighted path lengths have an interesting property. Let E be the weighted path length of a binary tree, E L be the weighted path length of its left subtree, and E R be the weighted path length of its right subtree. Also let W be the sum of all the ...
An x-fast trie is a bitwise trie: a binary tree where each subtree stores values whose binary representations start with a common prefix. Each internal node is labeled with the common prefix of the values in its subtree and typically, the left child adds a 0 to the end of the prefix, while the right child adds a 1.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A full binary tree An ancestry chart which can be mapped to a perfect 4-level binary tree. A full binary tree (sometimes referred to as a proper, [15] plane, or strict binary tree) [16] [17] is a tree in which every node has either 0 or 2 children.
An example of a y-fast trie. The nodes shown in the x-fast trie are the representatives of the O(n / log M) balanced binary search trees.. A y-fast trie consists of two data structures: the top half is an x-fast trie and the lower half consists of a number of balanced binary trees.
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
The Day–Stout–Warren (DSW) algorithm is a method for efficiently balancing binary search trees – that is, decreasing their height to O(log n) nodes, where n is the total number of nodes. Unlike a self-balancing binary search tree , it does not do this incrementally during each operation, but periodically, so that its cost can be amortized ...