Search results
Results from the WOW.Com Content Network
The urea cycle converts highly toxic ammonia to urea for excretion. [1] This cycle was the first metabolic cycle to be discovered by Hans Krebs and Kurt Henseleit in 1932, [2] [3] [4] five years before the discovery of the TCA cycle. The urea cycle was described in more detail later on by Ratner and Cohen.
The excretion of urea is called ureotelism. Land animals, mainly amphibians and mammals, convert ammonia into urea, a process which occurs in the liver and kidney. These animals are called ureotelic. [3] Urea is a less toxic compound than ammonia; two nitrogen atoms are eliminated through it and less water is needed for its excretion.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Diagram of biochemical urea cycle. Uses only capital letters, no textual description. 16:16, 5 February 2006: 800 × 600 (80 KB) Ayacop: Diagram of biochemical urea cycle. Uses only capital letters, no textual description. 16:09, 5 February 2006: 800 × 600 (80 KB) Ayacop: Diagram of biochemical urea cycle. Uses only capital letters, no textual ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Ornithine translocase deficiency belongs to a class of metabolic disorders referred to as urea cycle disorders. The urea cycle is a sequence of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys.
Ornithine transcarbamylase deficiency also known as OTC deficiency is the most common urea cycle disorder in humans. Ornithine transcarbamylase, the defective enzyme in this disorder, is the final enzyme in the proximal portion of the urea cycle, responsible for converting carbamoyl phosphate and ornithine into citrulline.
In land-dwelling animals, it is an intermediary metabolite in nitrogen disposal through the urea cycle and the synthesis of pyrimidines. Its enzymatic counterpart, carbamoyl phosphate synthetase I (CPS I), interacts with a class of molecules called sirtuins, NAD dependent protein deacetylases, and ATP to form carbamoyl phosphate.