Search results
Results from the WOW.Com Content Network
The one-shot deviation principle (also known as single-deviation property [1]) is the principle of optimality of dynamic programming applied to game theory. [2] It says that a strategy profile of a finite multi-stage extensive-form game with observed actions is a subgame perfect equilibrium (SPE) if and only if there exist no profitable single deviation for each subgame and every player.
In game theory, a repeated game (or iterated game) is an extensive form game that consists of a number of repetitions of some base game (called a stage game). The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the ...
Firstly, equilibrium constants are determined at a number of different ionic strengths, at a chosen temperature and particular background electrolyte. The interaction coefficients are then determined by fitting to the observed equilibrium constant values. The procedure also provides the value of K at infinite dilution. It is not limited to ...
Strict stationary equilibria: [6] A Nash equilibrium is called strict if each player strictly prefers the infinite sequence of outcomes attained in equilibrium, over any other sequence he can deviate to. A Nash equilibrium is called stationary if the outcome is the same in each time-period. An outcome is attainable in strict-stationary ...
Such a payoff is described as Pareto efficient, and the set of such payoffs is called the Pareto frontier. Many economists study the ways in which payoffs are in some sort of economic equilibrium . One example of such an equilibrium is the Nash equilibrium , where each player plays a strategy such that their payoff is maximized given the ...
In chemistry, ion association is a chemical reaction whereby ions of opposite electric charge come together in solution to form a distinct chemical entity. [1] [2] Ion associates are classified, according to the number of ions that associate with each other, as ion pairs, ion triplets, etc. Ion pairs are also classified according to the nature of the interaction as contact, solvent-shared or ...
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.
The details of how these complexes are formed are not important. The saddle point itself is called the transition state. The activated complexes are in a special equilibrium (quasi-equilibrium) with the reactant molecules. The activated complexes can convert into products, and kinetic theory can be used to calculate the rate of this conversion.