enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loop (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Loop_(graph_theory)

    A special case is a loop, which adds two to the degree. This can be understood by letting each connection of the loop edge count as its own adjacent vertex. In other words, a vertex with a loop "sees" itself as an adjacent vertex from both ends of the edge thus adding two, not one, to the degree.

  3. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]

  4. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is ⁠ n(n − 1) / 2 ⁠.

  6. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    where the degree ⁡ of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph , this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...

  7. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A biregular graph is a bipartite graph in which there are only two different vertex degrees, one for each set of the vertex bipartition. block 1. A block of a graph G is a maximal subgraph which is either an isolated vertex, a bridge edge, or a 2-connected subgraph. If a block is 2-connected, every pair of vertices in it belong to a common cycle.

  8. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    An isolated vertex has no adjacent vertices. The degree of a vertex is equal to the number of adjacent vertices. A special case is a loop that connects a vertex to itself; if such an edge exists, the vertex belongs to its own neighbourhood.

  9. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    A directed graph has an Eulerian trail if and only if at most one vertex has − = 1, at most one vertex has (in-degree) − (out-degree) = 1, every other vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a single connected component of the underlying undirected graph. [6]