Search results
Results from the WOW.Com Content Network
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Strength of Materials (Russian: Проблемы прочности) is a bimonthly peer-reviewed scientific journal covering the field of strength of materials and structural elements, mechanics solid deformed body.
This material exhibits an ultra-high hardness, higher than any reported ultrafine-grained nickel. The exceptional strength is resulted from the appearance of low-angle grain boundaries, which have low-energy states efficient for enhancing structure stability. Another method to stabilize grain boundaries is the addition of nonmetallic impurities.
Stress–strength analysis is the analysis of the strength of the materials and the interference of the stresses placed on the materials, where "materials" is not necessarily the raw goods or parts, but can be an entire system. Stress-Strength Analysis is a tool used in reliability engineering.
According to the classical theories of elastic or plastic structures made from a material with non-random strength (f t), the nominal strength (σ N) of a structure is independent of the structure size (D) when geometrically similar structures are considered. [1] Any deviation from this property is called the size effect.
It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values. Use case examples include biological and brittle material failure analysis, where modulus is used to describe the variability of failure strength for materials.
The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress σ 3 {\displaystyle \sigma _{3}} is less than the uniaxial compressive strength of the material.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]