Search results
Results from the WOW.Com Content Network
SI multiples of molar (M) Submultiples Multiples Value SI symbol Name Value SI symbol Name 10 −1 M dM decimolar 10 1 M daM decamolar 10 −2 M cM centimolar 10 2 M hM hectomolar 10 −3 M mM millimolar 10 3 M kM kilomolar 10 −6 M μM micromolar 10 6 M MM megamolar 10 −9 M nM nanomolar 10 9 M GM gigamolar 10 −12 M pM picomolar 10 12 M TM
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 2 ]
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise.
Toggle the table of contents. Hydrochloric acid (data page) 1 language.
Hydrochloric Acid: 84.8 [13] tert-Butanol: 82.5 [14] Chlorobenzene: 131.7 [15] p-chlorobenzotrifluoride: 1.34 136 –36.1 [16] MTBE: 55.2 [17] Pentane: 36.1 [18] Petroleum Ether: 35.0-60.0 [19] Cyclopentane: 49.3 [20] Isopropanol: 82.3 [21] Dichloromethane: 1.33 39.8 [22] n-Propanol: 97.2 [23] Pyridine: 115.3 [24] Dimethylacetamide: 166.1 [25 ...
Physical properties of hydrochloric acid, such as boiling and melting points, density, and pH, depend on the concentration or molarity of HCl in the aqueous solution. They range from those of water at very low concentrations approaching 0% HCl to values for fuming hydrochloric acid at over 40% HCl.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]