enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice reduction - Wikipedia

    en.wikipedia.org/wiki/Lattice_reduction

    Lattice reduction in two dimensions: the black vectors are the given basis for the lattice (represented by blue dots), the red vectors are the reduced basis. In mathematics, the goal of lattice basis reduction is to find a basis with short, nearly orthogonal vectors when given an integer lattice basis as input. This is realized using different ...

  3. Korkine–Zolotarev lattice basis reduction algorithm - Wikipedia

    en.wikipedia.org/wiki/Korkine–Zolotarev_lattice...

    The Korkine–Zolotarev (KZ) lattice basis reduction algorithm or Hermite–Korkine–Zolotarev (HKZ) algorithm is a lattice reduction algorithm. For lattices in R n {\displaystyle \mathbb {R} ^{n}} it yields a lattice basis with orthogonality defect at most n n {\displaystyle n^{n}} , unlike the 2 n 2 / 2 {\displaystyle 2^{n^{2}/2}} bound of ...

  4. Lenstra–Lenstra–Lovász lattice basis reduction algorithm

    en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász...

    An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.

  5. Lattice problem - Wikipedia

    en.wikipedia.org/wiki/Lattice_problem

    Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time. [33]

  6. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    Nearby lattice points are continually examined until the area or volume enclosed is the correct area or volume for a primitive cell. Alternatively, if the basis vectors of the lattice are reduced using lattice reduction only a set number of lattice points need to be used. [10]

  7. Formal concept analysis - Wikipedia

    en.wikipedia.org/wiki/Formal_concept_analysis

    In his article "Restructuring Lattice Theory" (1982), [1] initiating formal concept analysis as a mathematical discipline, Wille starts from a discontent with the current lattice theory and pure mathematics in general: The production of theoretical results—often achieved by "elaborate mental gymnastics"—were impressive, but the connections between neighboring domains, even parts of a ...

  8. Unimodular lattice - Wikipedia

    en.wikipedia.org/wiki/Unimodular_lattice

    A lattice is positive definite if the norm of all nonzero elements is positive. The determinant of a lattice is the determinant of the Gram matrix, a matrix with entries (a i, a j), where the elements a i form a basis for the lattice. An integral lattice is unimodular if its determinant is 1 or −1.

  9. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.