enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Snub disphenoid - Wikipedia

    en.wikipedia.org/wiki/Snub_disphenoid

    In geometry, the snub disphenoid is a convex polyhedron with 12 equilateral triangles as its faces. It is an example of deltahedron and Johnson solid. It can be constructed in different approaches. This shape is also called Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron.

  3. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    Both volumes have formulas involving the golden ratio but are taken to different powers. [1] Golden rectangle may also related to both regular icosahedron and regular dodecahedron. The regular icosahedron can be constructed by intersecting three golden rectangles perpendicularly, arranged in two-by-two orthogonal, and connecting each of the ...

  4. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.

  5. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Rectangle. square (regular ... Compound of small stellated dodecahedron and great dodecahedron; ... Sierpinski triangle (fractal geometry)

  6. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices , and 120 edges .

  7. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The surface area of a polyhedron is the sum of areas of its faces, for definitions of polyhedra for which the area of a face is well-defined. The geodesic distance between any two points on the surface of a polyhedron measures the length of the shortest curve that connects the two points, remaining within the surface.

  9. Truncated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_dodecahedron

    The truncated dodecahedron is constructed from a regular dodecahedron by cutting all of its vertices off, a process known as truncation. [1] Alternatively, the truncated dodecahedron can be constructed by expansion: pushing away the edges of a regular dodecahedron, forming the pentagonal faces into decagonal faces, as well as the vertices into triangles. [2]