enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    The number of clusters chosen should therefore be 4. In cluster analysis, the elbow method is a heuristic used in determining the number of clusters in a data set. The method consists of plotting the explained variation as a function of the number of clusters and picking the elbow of the curve as the number of clusters to

  4. Silhouette (clustering) - Wikipedia

    en.wikipedia.org/wiki/Silhouette_(clustering)

    Thus silhouette plots and means may be used to determine the natural number of clusters within a dataset. One can also increase the likelihood of the silhouette being maximized at the correct number of clusters by re-scaling the data using feature weights that are cluster specific. [4]

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  6. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Euclidean distance is used as a metric and variance is used as a measure of cluster scatter. The number of clusters k is an input parameter: an inappropriate choice of k may yield poor results. That is why, when performing k-means, it is important to run diagnostic checks for determining the number of clusters in the data set.

  7. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  8. Talk : Determining the number of clusters in a data set

    en.wikipedia.org/wiki/Talk:Determining_the...

    If 100 members of this population were randomly sampled, the rule of thumb suggests that there are ~7 clusters. If 1000 members of this population were sampled, the rule of thumb suggests there are ~22 clusters. In either case, it was still the same population with three clusters.Combee123 22:05, 25 January 2016 (UTC)

  9. Davies–Bouldin index - Wikipedia

    en.wikipedia.org/wiki/Davies–Bouldin_index

    The Davies–Bouldin index (DBI), introduced by David L. Davies and Donald W. Bouldin in 1979, is a metric for evaluating clustering algorithms. [1] This is an internal evaluation scheme, where the validation of how well the clustering has been done is made using quantities and features inherent to the dataset.