Search results
Results from the WOW.Com Content Network
The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]
In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n {\displaystyle n} .
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
There is also a connection formula for the ratio of two rising factorials given by () = (+) (),. Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities: [11] (p 52)
In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .
Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.
A two-sum formula can be obtained using one of the symmetric formulae for Stirling numbers in conjunction with the explicit formula for Stirling numbers of the second kind. [ n k ] = ∑ j = n 2 n − k ( j − 1 k − 1 ) ( 2 n − k j ) ∑ m = 0 j − n ( − 1 ) m + n − k m j − k m !
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics, a derangement is a permutation of the elements of a set in which no element appears in its original position.