Search results
Results from the WOW.Com Content Network
Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key insertion times, in order to keep the height proportional to log 2 (n). Although a certain overhead is involved, it is not bigger than the always necessary lookup cost and may be justified by ensuring fast execution of all ...
In computer science, join-based tree algorithms are a class of algorithms for self-balancing binary search trees. This framework aims at designing highly-parallelized algorithms for various balanced binary search trees. The algorithmic framework is based on a single operation join. [1]
The splay tree is a form of binary search tree invented in 1985 by Daniel Sleator and Robert Tarjan on which the standard search tree operations run in ( ()) amortized time. [10] It is conjectured to be dynamically optimal in the required sense. That is, a splay tree is believed to perform any sufficiently long access sequence X in time O ...
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
In computer science, a scapegoat tree is a self-balancing binary search tree, invented by Arne Andersson [2] in 1989 and again by Igal Galperin and Ronald L. Rivest in 1993. [1] It provides worst-case O ( log n ) {\displaystyle {\color {Blue}O(\log n)}} lookup time (with n {\displaystyle n} as the number of entries) and O ( log n ...
In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
In computer science, a WAVL tree or weak AVL tree is a self-balancing binary search tree. WAVL trees are named after AVL trees , another type of balanced search tree, and are closely related both to AVL trees and red–black trees , which all fall into a common framework of rank balanced trees .