Search results
Results from the WOW.Com Content Network
The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure.
An example in which the myristoylation of a protein is important is in apoptosis, programmed cell death. After the protein BH3 interacting-domain death agonist (Bid) has been myristoylated, it targets the protein to move to the mitochondrial membrane to release cytochrome c, which then ultimately leads to cell death. [14]
Pages in category "Peripheral membrane proteins" The following 172 pages are in this category, out of 172 total. This list may not reflect recent changes. 0–9.
Integral membrane proteins are a permanent part of a cell membrane and can either penetrate the membrane (transmembrane) or associate with one or the other side of a membrane (integral monotopic). Peripheral membrane proteins are transiently associated with the cell membrane.
Peripheral proteins are unlike integral proteins in that they hold weak interactions with the surface of the bilayer and can easily become dissociated from the membrane. [6] Peripheral proteins are located on only one face of a membrane and create membrane asymmetry.
Membrane proteins consist of three main types: integral proteins, peripheral proteins, and lipid-anchored proteins. [4] As shown in the adjacent table, integral proteins are amphipathic transmembrane proteins. Examples of integral proteins include ion channels, proton pumps, and g-protein coupled receptors.
Schematic representation of transmembrane proteins: 1) a single-pass membrane protein 2) a multipass membrane protein (α-helix) 3) a multipass membrane protein β-sheet. The membrane is represented in light yellow. A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane.
At the top level are all alpha proteins (domains consisting of alpha helices), all beta proteins (domains consisting of beta sheets), and mixed alpha helix/beta sheet proteins. While most proteins adopt a single stable fold, a few proteins can rapidly interconvert between one or more folds. These are referred to as metamorphic proteins. [5]