Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Springs can be classified depending on how the load force is applied to them: Tension/extension spring The spring is designed to operate with a tension load, so the spring stretches as the load is applied to it. Compression spring Designed to operate with a compression load, so the spring gets shorter as the load is applied to it. Torsion spring
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is Δ E p = 1 2 k ( r 2 − r 1 ) 2 {\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}} where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
In engineering and physics, a spring system or spring network is a model of physics described as a graph with a position at each vertex and a spring of given stiffness and length along each edge. This generalizes Hooke's law to higher dimensions. This simple model can be used to solve the pose of static systems from crystal lattice to springs.
A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. [ 1 ] It works in accordance with Hooke's Law , which states that the force needed to extend or compress a spring by some distance scales linearly with ...
The force of the spring reverses the direction of rotation, so the wheel oscillates back and forth, driven at the top by the clock's gears. Torsion springs consisting of twisted ropes or sinew, were used to store potential energy to power several types of ancient weapons; including the Greek ballista and the Roman scorpio and catapults like the ...
Jun-ichi Ueda and Yoshiro Sadamoto have found [1] that as increases beyond , the effective mass of a spring in a vertical spring-mass system becomes smaller than Rayleigh's value and eventually reaches negative values at about . This unexpected behavior of the effective mass can be explained in terms of the elastic after-effect (which is the ...