Search results
Results from the WOW.Com Content Network
For a reciprocal antenna, these two patterns are identical. A multitude of antenna pattern measurement techniques have been developed. The first technique developed was the far-field range, where the antenna under test (AUT) is placed in the far-field of a range antenna.
The definition of antenna gain or power gain already includes the effect of the antenna's efficiency. Therefore, if one is trying to radiate a signal toward a receiver using a transmitter of a given power, one need only compare the gain of various antennas rather than considering the efficiency as well.
Instead, the radiation pattern of the antenna is determined by a single simulation, and the receiving pattern inferred by reciprocity. When determining the pattern of an antenna by measurement, the antenna may be either receiving or transmitting, whichever is more convenient.
Forms of the reciprocity theorems are used in many electromagnetic applications, such as analyzing electrical networks and antenna systems. [1] For example, reciprocity implies that antennas work equally well as transmitters or receivers, and specifically that an antenna's radiation and receiving patterns are identical.
In electromagnetics, the antenna factor (AF, units: m −1, reciprocal meter) is defined as the ratio of the electric field E (units: V/m or μV/m) to the voltage V (units: V or μV) induced across the terminals of an antenna:
When actual measurements of an antenna's gain are made by a laboratory, the field strength of the test antenna is measured when supplied with, say, 1 watt of transmitter power, at a certain distance. That field strength is compared to the field strength found using a so-called reference antenna at the same distance receiving the same power in ...
For such an antenna, the near field is the region within a radius r ≪ λ, while the far-field is the region for which r ≫ 2 λ. The transition zone is the region between r = λ and r = 2 λ . The length of the antenna, D, is not important, and the approximation is the same for all shorter antennas (sometimes idealized as so-called point ...
The effective area of an antenna or aperture is based upon a receiving antenna. However, due to reciprocity, an antenna's directivity in receiving and transmitting are identical, so the power transmitted by an antenna in different directions (the radiation pattern) is also proportional to the effective area .