enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Daily time dilation (gain or loss if negative) in microseconds as a function of (circular) orbit radius r = rs/re, where rs is satellite orbit radius and re is the equatorial Earth radius, calculated using the Schwarzschild metric. At r ≈ 1.497 [Note 1] there is no time dilation. Here the effects of motion and reduced gravity cancel.

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Gravity field surrounding Earth from a macroscopic perspective. Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.

  5. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In physics, time is defined by its measurement: time is what a clock reads. [1] In classical, non-relativistic physics, it is a scalar quantity (often denoted by the symbol ) and, like length, mass, and charge, is usually described as a fundamental quantity. Time can be combined mathematically with other physical quantities to derive other ...

  6. Shapiro time delay - Wikipedia

    en.wikipedia.org/wiki/Shapiro_time_delay

    The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.

  8. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    The left hand side of this set of four equations (one each for the time-like and three spacelike values of index λ) is the object's proper-acceleration 3-vector combined with a null time component as seen from the vantage point of a reference or book-keeper coordinate system in which the object is at rest.

  9. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    Gravitational redshift can be interpreted as a consequence of the equivalence principle (that gravity and acceleration are equivalent and the redshift is caused by the Doppler effect) [5] or as a consequence of the mass–energy equivalence and conservation of energy ('falling' photons gain energy), [6] [7] though there are numerous subtleties ...