Search results
Results from the WOW.Com Content Network
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once
A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
If path ends at vertex , then the vertex corresponding to in has degree equal to the number of ways that may be extended by an edge that does not connect back to ; that is, the degree of this vertex in is either (an even number) if does not form part of a Hamiltonian cycle through , or (an odd number) if is part of a Hamiltonian cycle ...
A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...
Knight's graph showing all possible paths for a knight's tour on a standard 8 × 8 chessboard. The numbers on each node indicate the number of possible moves that can be made from that position. The knight's tour problem is an instance of the more general Hamiltonian path problem in graph theory.
First edition. Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes Kőnig.