Search results
Results from the WOW.Com Content Network
The difference between the mean and apparent solar time is the equation of time, which can also be seen in Earth's analemma. Because of the variation in the length of the synodic day, the days with the longest and shortest period of daylight do not coincide with the solstices near the equator. As viewed from Earth during the year, the Sun ...
A full lunar day observed from the Earth, where orbital libration causes the apparent wobble. A lunar day is the time it takes for Earth's Moon to complete on its axis one synodic rotation, meaning with respect to the Sun. Informally, a lunar day and a lunar night is each approx. 14 Earth days.
The period depends on the relative angular velocity of Earth and the planet, as seen from the Sun. The time it takes to complete this period is the synodic period of the planet. Let T be the period (for example the time between two greatest eastern elongations), ω be the relative angular velocity, ω e Earth's angular velocity and ω p the ...
The synodic period is the amount of time that it takes for an object to reappear at the same point in relation to two or more other objects. In common usage, these two objects are typically Earth and the Sun. The time between two successive oppositions or two successive conjunctions is also equal to the synodic period. For celestial bodies in ...
Visualization of a period of one saros cycle in 3D. After one saros, the Moon will have completed roughly an integer number of synodic, draconic, and anomalistic periods (223, 242, and 239) and the Earth-Sun-Moon geometry will be nearly identical: the Moon will have the same phase and be at the same node and the same distance from the Earth.
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...