enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  3. DNA re-replication - Wikipedia

    en.wikipedia.org/wiki/DNA_re-replication

    Cells with replication stress activate replication checkpoints so that S phase is delayed and slows down the transition to G2/M phase. When replicative stress is recognized by U-2-OS cells, human osteosarcoma cell lines with wild-type retinoblastoma (RB) and p53, the ATM/ATR-regulated DNA damage network is activated. [16]

  4. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    This is known as the end replication problem. [1] The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.

  5. Hayflick limit - Wikipedia

    en.wikipedia.org/wiki/Hayflick_limit

    The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage is known as cellular senescence.

  6. DNA end resection - Wikipedia

    en.wikipedia.org/wiki/DNA_end_resection

    During telomeric DNA replication in the S/G2 and G1 phases of the cell cycle, the 3' lagging strand leaves a short overhang called a G-tail. [4] [3] Telomeric DNA ends at the 3' G tail end because the 3' lagging strand extends without its complementary 5' C leading strand. The G tail provide a major function to telomeric DNA such that the G ...

  7. DNA replication stress - Wikipedia

    en.wikipedia.org/wiki/DNA_replication_stress

    The replication fork consists of a group of proteins that influence the activity of DNA replication. In order for the replication fork to stall, the cell must possess a certain number of stalled forks and arrest length. The replication fork is specifically paused due to the stalling of helicase and polymerase activity, which are linked together ...

  8. Games on AOL.com: Free online games, chat with others in real ...

    www.aol.com/games/play/masque-publishing/astralume

    Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. DNA damage (naturally occurring) - Wikipedia

    en.wikipedia.org/wiki/DNA_damage_(naturally...

    However, the rad9 strain exhibits an entirely different effect. These cells fail to delay in the G2 phase when exposed to x-irradiation, and end up progressing through the cell cycle unperturbed, before dying. This suggests that the RAD9 gene, unlike the other RAD genes, plays a crucial role in initiating G2 arrest.