enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    5: 120 6: 720 7: 5 040: 8: 40 320: ... the factorial of a non ... It can be extended to the non-integer points in the rest of the complex plane by solving for Euler's ...

  3. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n.For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1.

  4. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    The distinct polynomial expansions in the previous equations actually define the α-factorial products for multiple distinct cases of the least residues x ≡ n 0 mod α for n 0 ∈ {0, 1, 2, ..., α − 1}. The generalized α-factorial polynomials, σ (α) n (x) where σ (1)

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    2.4 Modified-factorial denominators. 2.5 Binomial coefficients. 2.6 Harmonic numbers. 3 Binomial coefficients. ... 7.5 Exponential and logarithms. 8 See also. 9 Notes ...

  6. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = ⁠ 1+ √ 5 / 2 ⁠ is the golden ratio. Then the only real solution x = −1.84208... is given by

  7. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  8. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.

  9. Closed-form expression - Wikipedia

    en.wikipedia.org/wiki/Closed-form_expression

    The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).