Search results
Results from the WOW.Com Content Network
A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1 / n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1 / 8 of each of them. [3]
Primitive unit cells are defined as unit cells with the smallest volume for a given crystal. (A crystal is a lattice and a basis at every lattice point.) To have the smallest cell volume, a primitive unit cell must contain (1) only one lattice point and (2) the minimum amount of basis constituents (e.g., the minimum number of atoms in a basis).
The primitive cubic lattice (cP) consists of one lattice point on each corner of the cube; this means each simple cubic unit cell has in total one lattice point. Each atom at a lattice point is then shared equally between eight adjacent cubes, and the unit cell therefore contains in total one atom (1 ⁄ 8 × 8).
The unit cell is defined as the smallest repeating unit having the full symmetry of the crystal structure. [2] The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ). The positions of particles inside the unit cell ...
Monoclinic crystal An example of the monoclinic crystal orthoclase. In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a parallelogram ...
One unit cell, 3. A lattice of 3 × 3 × 3 unit cells. Diamond's cubic structure is in the Fd 3 m space group (space group 227), which follows the face-centered cubic Bravais lattice. The lattice describes the repeat pattern; for diamond cubic crystals this lattice is "decorated" with a motif of two tetrahedrally bonded atoms in each primitive ...
For convenience a Bravais lattice is depicted by a unit cell which is a factor 1, 2, 3, or 4 larger than the primitive cell. Depending on the symmetry of a crystal or other pattern, the fundamental domain is again smaller, up to a factor 48.
A Wigner–Seitz cell is an example of a primitive cell, which is a unit cell containing exactly one lattice point. For any given lattice, there are an infinite number of possible primitive cells. For any given lattice, there are an infinite number of possible primitive cells.