Search results
Results from the WOW.Com Content Network
The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature.For a curve, it equals the radius of the circular arc which best approximates the curve at that point.
In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every ...
The arc length (length of a line segment) defined by a polar function is found by the integration over the curve r(φ). Let L denote this length along the curve starting from points A through to point B , where these points correspond to φ = a and φ = b such that 0 < b − a < 2 π .
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
If a curve γ represents the path of a particle, then the instantaneous velocity of the particle at a given point P is expressed by a vector, called the tangent vector to the curve at P. Mathematically, given a parametrized C 1 curve γ = γ(t), for every value t = t 0 of the parameter, the vector ′ = | = is the tangent vector at the point P ...
An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve. [1] The evolute of an involute is the original curve. It is generalized by the roulette family of curves. That is, the involutes of a curve are the roulettes of the curve generated by a straight line.
The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and later published in his Principia in 1687, [2] which was the first problem in the field to be formulated and correctly solved, [2] and was also one of the most difficult problems tackled by variational methods prior to the twentieth century.