Search results
Results from the WOW.Com Content Network
The trigonometric functions sine and cosine are common periodic functions, with period (see the figure on the right). The subject of Fourier series investigates the idea that an 'arbitrary' periodic function is a sum of trigonometric functions with matching periods.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
English: SINE and COSINE-Graph of the sine- and cosine-functions sin(x) and cos(x).One period from 0 to 2π is drawn. x- and y-axis have the same units. All labels are embedded in "Computer Modern" font.
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
All trigonometric functions listed have period , unless otherwise stated. For the following trigonometric functions: U n is the n th up/down number, B n is the n th Bernoulli number in Jacobi elliptic functions, = ()
Graphs of roses are composed of petals.A petal is the shape formed by the graph of a half-cycle of the sinusoid that specifies the rose. (A cycle is a portion of a sinusoid that is one period T = 2π / k long and consists of a positive half-cycle, the continuous set of points where r ≥ 0 and is T / 2 = π / k long, and a negative half-cycle is the other half where r ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [ 32 ] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines . [ 33 ]