Search results
Results from the WOW.Com Content Network
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow , an English mathematician .
For pipelines, this value is derived from Barlow's Formula, which takes into account wall thickness, diameter, allowable stress (which is a function of the material used), and a safety factor. The MAOP is less than the MAWP (maximum allowable working pressure).
The SMYS is required to determine the maximum allowable operating pressure (MAOP) of a pipeline, as determined by Barlow's Formula which is P = (2 * S * T)/(OD * SF), where P is pressure, OD is the pipe’s outside diameter, S is the SMYS, T is its wall thickness, and SF is a [Safety Factor].
In practical engineering applications for cylinders (pipes and tubes), hoop stress is often re-arranged for pressure, and is called Barlow's formula. Inch-pound-second system (IPS) units for P are pounds-force per square inch (psi). Units for t, and d are inches (in). SI units for P are pascals (Pa), while t and d=2r are in meters (m).
Barlow's disease (disambiguation), a term for scurvy or for mitral valve prolapse; Barlow's formula, for calculation of the internal pressure that a pipe can withstand; Barlow knife, a certain pattern of traditional slipjoint pocket knife; Barlow's law, an incorrect theory of a wire's electric current-carrying ability
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
He is credited with the eponymous Barlow's wheel (an early homopolar electric motor) and with Barlow's law (an incorrect formula of electrical conductance). Barlow investigated a suggestion made by André-Marie Ampère in 1820 that an electromagnetic telegraph could be made by deflecting a compass needle with an electric current. In 1824 Barlow ...
Cone of light behind an achromatic doublet objective lens (A) without (red) and with (green) a Barlow lens optical element (B). The Barlow lens, named after Peter Barlow, is a diverging lens which, used in series with other optics in an optical system, increases the effective focal length of an optical system as perceived by all components that are after it in the system.