Ad
related to: how to multiply 3 digit numbers by 2 digit
Search results
Results from the WOW.Com Content Network
[1] [2] [3] It is a divide-and-conquer algorithm that reduces the multiplication of two n-digit numbers to three multiplications of n/2-digit numbers and, by repeating this reduction, to at most single-digit multiplications.
To multiply two numbers with n digits using this method, one needs about n 2 operations. More formally, multiplying two n-digit numbers using long multiplication requires Θ(n 2) single-digit operations (additions and multiplications).
This method requires memorization of the squares of the one-digit numbers 1 to 9. The square of mn, mn being a two-digit integer, can be calculated as 10 × m(mn + n) + n 2. Meaning the square of mn can be found by adding n to mn, multiplied by m, adding 0 to the end and finally adding the square of n. For example, 23 2: 23 2 = 10 × 2(23 + 3 ...
(A blank space or zero to the upper left of each digit, separated by a diagonal line, should be understood, since 1 × 1 = 01, 1 × 2 = 02, 1 x 3 = 03, etc.) A small number is chosen, usually 2 through 9, by which to multiply the large number. In this example the small number by which to multiply the larger is 6.
Two -digit numbers One +-digit ... One -digit number Schoolbook long multiplication () Karatsuba algorithm 3-way Toom–Cook multiplication ()-way Toom ...
A ternary / ˈ t ɜːr n ər i / numeral system (also called base 3 or trinary [1]) has three as its base.Analogous to a bit, a ternary digit is a trit (trinary digit).One trit is equivalent to log 2 3 (about 1.58496) bits of information.
As an example, consider the multiplication of 58 with 213. After writing the multiplicands on the sides, consider each cell, beginning with the top left cell. In this case, the column digit is 5 and the row digit is 2. Write their product, 10, in the cell, with the digit 1 above the diagonal and the digit 0 below the diagonal (see picture for ...
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
Ad
related to: how to multiply 3 digit numbers by 2 digit