Search results
Results from the WOW.Com Content Network
Cyanide is unstable in water, but the reaction is slow until about 170 °C. It undergoes hydrolysis to give ammonia and formate, which are far less toxic than cyanide: [14] CN − + 2 H 2 O → HCO − 2 + NH 3. Cyanide hydrolase is an enzyme that catalyzes this reaction.
Hydrolysis explains why basic salts such as basic zinc acetate and basic zinc carbonate, Zn 3 (OH) 4 (CO 3)•H 2 O are easy to obtain. The reason for the hydrolysis is the high electrical charge density on the zinc ion, which pulls electrons away from an OH bond of a coordinated water molecule and releases a hydrogen ion
Upon hydrolysis, an amide converts into a carboxylic acid and an amine or ammonia (which in the presence of acid are immediately converted to ammonium salts). One of the two oxygen groups on the carboxylic acid are derived from a water molecule and the amine (or ammonia) gains the hydrogen ion. The hydrolysis of peptides gives amino acids.
The cyanate ion is an ambidentate ligand, forming complexes with a metal ion in which either the nitrogen or oxygen atom may be the electron-pair donor. It can also act as a bridging ligand . Compounds that contain the cyanate functional group , −O−C≡N, are known as cyanates or cyanate esters .
Cyanogen is typically generated from cyanide compounds. One laboratory method entails thermal decomposition of mercuric cyanide: . 2 Hg(CN) 2 → (CN) 2 + Hg 2 (CN) 2 Or, one can combine solutions of copper(II) salts (such as copper(II) sulfate) with cyanides; an unstable copper(II) cyanide is formed which rapidly decomposes into copper(I) cyanide and cyanogen.
Atmospheric electricity utilization for the chemical reaction in which water is separated into oxygen and hydrogen. (Image via: Vion, US patent 28793. June 1860.) Electrolyser front with electrical panel in foreground. Electrolysis of water is the decomposition of water (H 2 O) into oxygen (O 2) and hydrogen (H 2): [2] Water electrolysis ship ...
The application exploits the high affinity of gold(I) for cyanide, which induces gold metal to oxidize and dissolve in the presence of air (oxygen) and water, producing the salt sodium dicyanoaurate (or sodium gold cyanide) (NaAu(CN) 2): [4] 4 Au + 8 NaCN + O 2 + 2 H 2 O → 4 Na[Au(CN) 2] + 4 NaOH
A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H 2 O) n] z+.The solvation number, n, determined by a variety of experimental methods is 4 for Li + and Be 2+ and 6 for most elements in periods 3 and 4 of the periodic table.