Search results
Results from the WOW.Com Content Network
The vitamin D receptor (VDR also known as the calcitriol receptor) is a member of the nuclear receptor family of transcription factors. [5] Calcitriol (the active form of vitamin D , 1,25-(OH) 2 vitamin D 3 ) binds to VDR, which then forms a heterodimer with the retinoid-X receptor .
Receptors: In addition to vitamin D metabolites, vitamin D receptor (VDR) proteins are also found in the brain; more specifically, they are found in the cerebellum, thalamus, hypothalamus, basal ganglia, and hippocampus. [1] The highest density of VDR is in substantia nigra, one of the primary areas of dopamine production.
The VDR is widely distributed in tissues, and is not restricted to those tissues considered the classic targets of vitamin D. The VDR upon binding to 1,25(OH) 2 D heterodimerizes with other nuclear hormone receptors, in particular the family of retinoid X receptors. This VDR/RXR heterodimer complex binds to the specific VDRE in the promoters of ...
It is involved in cognitive processes such as memory, learning, and executive functions. It influences mood and emotional well-being, acting on serotonin and other neurotransmitter systems.
Vitamin D receptors, CYP27B1, and CYP24A1 are found in various regions of the brain, showing that vitamin D is a neuroactive, neurosteroid hormone essential for the development of the brain and normal function. [5] Inflammation as a causative factor in schizophrenia is normally suppressed by vitamin D. [24]
A neurotransmitter receptor is a class of receptors that specifically binds with neurotransmitters as opposed to other molecules. In postsynaptic cells, neurotransmitter receptors receive signals that trigger an electrical signal, by regulating the activity of ion channels. The influx of ions through ion channels opened due to the binding of ...
V(D)J recombination allows for the generation of immunoglobulins and T cell receptors to antigens that neither the organism nor its ancestor(s) need to have previously encountered, allowing for an adaptive immune response to novel pathogens that develop or to those that frequently change (e.g., seasonal influenza).
D 1 receptor has a high degree of structural homology to another dopamine receptor, D 5, and they both bind similar drugs. [13] As a result, none of the known orthosteric ligands is selective for the D 1 vs. the D 5 receptor, but the benzazepines generally are more selective for the D 1 and D 5 receptors versus the D 2-like family. [12]