Search results
Results from the WOW.Com Content Network
For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base.
Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.
1. The domain is the real line .The set-family contains all the half-lines (rays) from a given number to positive infinity, i.e., all sets of the form {>} for some .For any set of real numbers, the intersection contains + sets: the empty set, the set containing the largest element of , the set containing the two largest elements of , and so on.
for some , < we say that G has a polynomial growth rate. The infimum k 0 {\displaystyle k_{0}} of such k' s is called the order of polynomial growth . According to Gromov's theorem , a group of polynomial growth is a virtually nilpotent group , i.e. it has a nilpotent subgroup of finite index .
r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =
A sequence of positive integers (or real numbers) is said to have double exponential rate of growth if the function giving the n th term of the sequence is bounded above and below by double exponential functions of n. Examples include The Fermat numbers = +
Economic growth, the increase in value of the goods and services produced by an economy; Compound annual growth rate or CAGR, a measure of financial growth; Population growth rate, change in population over time; Growth rate (group theory), a property of a group in group theory
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...