Search results
Results from the WOW.Com Content Network
For instance, the Henson graphs are universal in this sense for the i-clique-free graphs. A universal graph for a family F of graphs can also refer to a member of a sequence of finite graphs that contains all graphs in F; for instance, every finite tree is a subgraph of a sufficiently large hypercube graph [5] so a hypercube can be said to be a ...
When a graph contains a universal vertex, it is a cop-win graph, and almost all cop-win graphs contain a universal vertex. The number of labeled graphs containing a universal vertex can be counted by inclusion–exclusion , showing that there are an odd number of such graphs on any even number of vertices.
1. A universal graph is a graph that contains as subgraphs all graphs in a given family of graphs, or all graphs of a given size or order within a given family of graphs. 2. A universal vertex (also called an apex or dominating vertex) is a vertex that is adjacent to every other vertex in the graph. For instance, wheel graphs and connected ...
In graph theory, a wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. A wheel graph with n vertices can also be defined as the 1- skeleton of an ( n – 1 )-gonal pyramid .
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
It is possible to define a graph with vertices and edges the disjoint union of all coset spaces Γ/G x and Γ/G y respectively. This graph is a tree, called the universal covering tree, on which Γ acts. It admits the graph Y as fundamental domain. The graph of groups given by the stabilizer subgroups on the fundamental domain corresponds to ...
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...