enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations.

  3. FEATool Multiphysics - Wikipedia

    en.wikipedia.org/wiki/FEATool_Multiphysics

    The short MATLAB script below illustrates how a complete flow around a cylinder computational fluid dynamics (CFD) benchmark problem can be defined and solved with the FEATool m-script functions (including geometry, grid generation, problem definition, solving, and postprocessing all in a few lines of code).

  4. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    COPASI, a free (Artistic License 2.0) software package for the integration and analysis of ODEs. MATLAB, a technical computing application (MATrix LABoratory) GNU Octave, a high-level language, primarily intended for numerical computations. Scilab, an open source application for numerical computation.

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  6. System of differential equations - Wikipedia

    en.wikipedia.org/wiki/System_of_differential...

    For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system:

  7. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  8. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    The two dashed paths shown above are homotopic relative to their endpoints. The animation represents one possible homotopy. The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations.

  9. Differential-algebraic system of equations - Wikipedia

    en.wikipedia.org/wiki/Differential-algebraic...

    , a vector in , are dependent variables for which no derivatives are present (algebraic variables), t {\displaystyle t} , a scalar (usually time) is an independent variable. F {\displaystyle F} is a vector of n + m {\displaystyle n+m} functions that involve subsets of these n + m + 1 {\displaystyle n+m+1} variables and n {\displaystyle n ...