Search results
Results from the WOW.Com Content Network
A DNase footprinting assay [1] is a DNA footprinting technique used in molecular biology/biochemistry that detects DNA-protein interaction by leveraging the fact that a protein bound to DNA often protects it from enzymatic cleavage. This makes it possible to locate a protein binding site on a particular DNA molecule.
DNase I Structure: DNase I is a glycoprotein with a molecular weight of 30,000 Da and a carbohydrate chain of 8-10 residues attached to Asn18 (orange). [3] It is an 𝛼,𝛽-protein with two 6-stranded 𝛽-pleated sheets which form the core of the structure. [4] These two core sheets run parallel, and all others run antiparallel.
In genetics, DNase I hypersensitive sites (DHSs) are regions of chromatin that are sensitive to cleavage by the DNase I enzyme. In these specific regions of the genome, chromatin has lost its condensed structure, exposing the DNA and making it accessible. This raises the availability of DNA to degradation by enzymes, such as DNase I.
In vivo footprinting is a technique used to analyze the protein-DNA interactions that are occurring in a cell at a given time point. [16] [20] DNase I can be used as a cleavage agent if the cellular membrane has been permeabilized. However the most common cleavage agent used is UV irradiation because it penetrates the cell membrane without ...
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.
DNase agar is used to test whether a microbe can produce the exoenzyme deoxyribonuclease (DNase), which hydrolyzes DNA. Methyl green is used as an indicator in the growth medium because it is a cation that provides an opaqueness to a medium with the presence of negatively charged DNA strands. When DNA is cleaved, the media becomes clear ...
Radioactive sulfur-35 was used to label the protein sections of the T2 phage, because sulfur is contained in protein but not DNA. [ 6 ] Hershey and Chase inserted the radioactive elements in the bacteriophages by adding the isotopes to separate media within which bacteria were allowed to grow for 4 hours before bacteriophage introduction.
In genetics, a hypersensitive site is a short region of chromatin and is detected by its super sensitivity to cleavage by DNase I and other various nucleases (DNase II and micrococcal nucleases). In a hypersensitive site, the nucleosomal structure is less compacted, increasing the availability of the DNA to binding by proteins, such as ...