enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  3. Space-time adaptive processing - Wikipedia

    en.wikipedia.org/wiki/Space-time_adaptive_processing

    A popular example is displaced phase center antenna (DPCA), which is a form of data-independent STAP in the beamspace, pre-Doppler. [7] The goal is to perform beamforming such that the beam appears stationary as the airborne radar is in motion over discrete time periods so the clutter appears without Doppler. [2]

  4. Range ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Range_ambiguity_resolution

    Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .

  5. Pulse compression - Wikipedia

    en.wikipedia.org/wiki/Pulse_compression

    Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.

  6. Pulse-Doppler signal processing - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_signal...

    Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance. Range and speed of the target are folded by a modulo operation produced by the sampling process. True range is found using the ambiguity resolution process. Ambiguity resolution process explanation

  7. Chirp compression - Wikipedia

    en.wikipedia.org/wiki/Chirp_compression

    The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power.

  8. Synthetic-aperture radar - Wikipedia

    en.wikipedia.org/wiki/Synthetic-aperture_radar

    In the cross-range coordinate, the similar resolution is mainly proportional to the bandwidth of the Doppler shift of the signal returns within the beamwidth. Since Doppler frequency depends on the angle of the scattering point's direction from the broadside direction, the Doppler bandwidth available within the beamwidth is the same at all ranges.

  9. Continuous-wave radar - Wikipedia

    en.wikipedia.org/wiki/Continuous-wave_radar

    Continuous-wave radar without frequency modulation (FM) only detects moving targets, as stationary targets (along the line of sight) will not cause a Doppler shift. Reflected signals from stationary and slow-moving objects are masked by the transmit signal, which overwhelms reflections from slow-moving objects during normal operation.