enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting occurs when a mathematical model cannot adequately capture the underlying structure of the data. An under-fitted model is a model where some parameters or terms that would appear in a correctly specified model are missing. [2] Underfitting would occur, for example, when fitting a linear model to nonlinear data.

  3. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative. That is, given a matrix A and a (column) vector of response variables y , the goal is to find [ 1 ]

  4. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Now, random variables (Pε, Mε) are jointly normal as a linear transformation of ε, and they are also uncorrelated because PM = 0. By properties of multivariate normal distribution, this means that Pε and Mε are independent, and therefore estimators β ^ {\displaystyle {\widehat {\beta }}} and σ ^ 2 {\displaystyle {\widehat {\sigma }}^{\,2 ...

  5. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. Thus, polynomial regression is a special case of linear regression. [1]

  6. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  7. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    linear and Generalized linear models can be regularized to decrease their variance at the cost of increasing their bias. [ 11 ] In artificial neural networks , the variance increases and the bias decreases as the number of hidden units increase, [ 12 ] although this classical assumption has been the subject of recent debate. [ 4 ]

  8. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The capital asset pricing model uses linear regression as well as the concept of beta for analyzing and quantifying the systematic risk of an investment. This comes directly from the beta coefficient of the linear regression model that relates the return on the investment to the return on all risky assets.

  9. Robust Regression and Outlier Detection - Wikipedia

    en.wikipedia.org/wiki/Robust_Regression_and...

    The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...